Richard's Paradox (artistic-philosophical-mathematical connections)
Main Article Content
Abstract
To explore the articulations that cross the fields of philosophy, arts and mathematics, we assume that these fields follow the modes of thought inscribed in a place and in a time, and are therefore historically constructed. We focus on the concept of representation and its various perceptions over the first three decades of the twentieth century, in Europe or Brazil. We analyse from Richard's Paradox, a statement formulated by the field of mathematics, but involving other fields, generating clear implications. This paradox instigated modes of thought (new understandings concerning representations) and practical achievements (central concept in the computer conception). Our ambition is to understand common processes (as the of representation) for knowledge territories pointed out above: this problem concerns contemporary ruptures that seem to resize the episteme/poiesis relationship.
Article Details
Copyright Notice
The author of the article or book reviews submitted and approved for publication authorizes the editors to reproduce it and publish it in the journal O que nos faz pensar, with the terms “reproduction” and “publication” being understood in accordance with the definitions of the Creative Commons Attribution-NonCommercial 4.0 International license. The article or book reviews may be accessed both via the World Wide Web – Internet (WWW – Internet), and in printed form, its being permitted, free of charge, to consult and reproduce the text for the personal use of whoever consults it. This authorization of publication has no time limit, with the editors of the journal O que nos faz pensar being responsible for maintaining the identification of the author of the article.
References
MARQUES, I.C. O Brasil e a abertura dos mercados. O trabalho em questão. Rio de Janeiro, RJ: Contraponto, 2002.
ATTIE, J. & MOURA, M. A altivez da ignorância matemática: Superbia Ignorantiam Mathematicae. Revista Educação e Pesquisa 44, 2018.
FOUCAULT, M. Isto não é um cachimbo. São Paulo, SP: Paz e Terra, 1988
FOUCAULT, M. As palavras e as coisas. Uma arqueologia das ciências humanas. São Paulo, SP: Martins Fontes, 2000.
DELEUZE, G. Lógica do Sentido. São Paulo, SP: Perspectiva, 2013.
ARTAUD, A. O teatro e seu duplo. São Paulo, SP: Max Limonad Ltda, 2006.
MARTINS, P. Configuração de Monteiro Lobato na crítica à Anita Malfatti. Revista Vernáculo 36, 2015.
LOBATO, M. Paranóia ou mistificação: A propósito da exposição de Malfatti. O Estado de São Paulo, Seção Artes e Artistas, 2017.
HILBERT, D. On the infinite. In P., Benacerraf e H., Putnan (Ed.) Philosophy of mathematics. Cambridge: Cambridge University Press, 1984.
HILBERT, D. Probleme der Grundlegung der Mathematik. In P., Mancosu (Ed.) From Brouwer to Hilbert: The debate on the foundations of mathematics in the 1920s, Oxford: Oxford University Press, 1922, 227-233.
RICHARD, J. Les principes des mathématiques et les problèmes des ensembles. Revue générale des sciences pures et appliquées 12, t. 16: 541-542, 1905.
REINHEIMER, P. Identidade nacional como estratégia política. Revista MANA (13)1, 2007. doi:https://doi.org/10.1590/S0104-93132007000100006
MARIZ, V. A música na Semana de Arte de 22. O Estado de São Paulo, Caderno Cultura, ano V, no. 448, 1989.
ZANELATTO, J. H. & MATIAS, C. P. Historiadores e musicólogos: vozes dissonantes sobre Villa Lobos no Estado Novo. Revista História (14)2, 432-449, 2014. doi:https://doi.org/10.5335/hdtv.14n.2.4582
ESTADÃO. Semana de Arte de 22, O Estado de São Paulo, Caderno Cultura, 14 de fev de1982, 185-190, 1982.
GÖDEL, K. On formally undecidable propositions of principia mathematica and related systems. In M., Davis (Ed.) The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions, New York: Dover Publications, 1965.
OLIVIEr, L. Chronique et correspondance. Revue générale des sciences pures et appliquées (12)16, 541-542, 1905.
POINCARÉ, H. Les Mathématiques et la Logique. Revue de Métaphysique et de Morale, 815-835, 1906.
KENNEDY, H. Peano: Life and works of Giuseppe Peano. London: Reidel Publishing Company, 1980.
DALEN, D. Hermann Weyl's Intuitionistic Mathematics. The Bulletin of Symbolic Logic, (1)2, 145-169, 1995. doi:https://doi.org/10.2307/421038.
WEYL, H. Über die neue Grundlagenkrise der Mathematik. Mathematische Zeitschrift 10 :37-79. In P., Mancosu (Ed.) ,From Brouwer to Hilbert: The debate on the foundations of mathematics in the 1920s, Oxford: Oxford University Press, 1921.
TURING, A. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society (2)42, 1936.